
Predicting IoT Network Congestion with Artificial
Intelligence Techniques

Abstract

Imagine IoT networks that can foresee congestion—and act before it hits. We introduce
a practical, industry-oriented approach to proactive congestion control. Using an encoder–
decoder LSTM (ED-LSTM), we accurately predict the loss ratio—the fraction of packets
lost over packets sent—so that gateways can adjust rate, priorities, or protocol knobs before
congestion becomes visible to applications. On realistic simulations with Cooja/Contiki
(6LoWPAN/IPv6, RPL, UDP/CoAP, IEEE 802.15.4), ED-LSTM consistently outperforms
LSTM, GRU, RNN, CNN, and Bi-LSTM in terms of RMSE, and generalizes across topologies.
This enables proactive QoS preservation for critical use cases such as healthcare monitoring
and industrial sensing.

Summary

Predicting packet losses tens of seconds ahead lets us act early (rate shaping, prioritization,
route/MAC adjustments), avoid queue build-ups, and preserve QoS without overprovisioning.

1 Why Predict the Loss Ratio?

The loss ratio is a robust, application-agnostic signal of network stress in constrained IoT
environments (low bandwidth, duty-cycled radios, lossy links). When loss spikes from 0.2 to 0.6
in remote patient monitoring, the impacts are immediate: missing vitals, delayed alerts, and
potential safety issues. If we can predict that spike, we can prevent it.

2 Data and Problem Setup

We emulate a 100-node grid: 98 CoAP senders, one CoAP server, and one RPL border router.
Each sender transmits every 10 s (112 B request / 86 B reply). We extract a global loss ratio
every 10 s over 10,000 intervals from Cooja/Contiki logs (6LoWPAN/IPv6, RPL, UDP/CoAP,
IEEE 802.15.4).

We cast forecasting as supervised learning with a sliding window: given the last m ∈
{5, 10, 15, 20} observations of the loss ratio series Xt, predict Xt+1. Data are normalized and
split 60/40 (train/test). We repeat each configuration 10 times to report stable estimates.

3 Models

We compare: basic RNN, GRU, LSTM; advanced RNN (Bi-LSTM, Encoder–Decoder LSTM);
and 1D CNN. Hyperparameters (layers, hidden units, activations) are tuned via grid search.

Key finding. ED-LSTM is consistently best in RMSE, with ∼0.08 train and < 0.10 test
across window sizes, and shows strong generalization on a distinct 14-node ring scenario (RMSE
∼0.06 vs. LSTM ∼0.07).
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4 Applications and Impact

• Healthcare IoT: ensure timely delivery of high-priority vitals (e.g., SpO2, ECG) under
rising load.

• Industry 4.0: smooth batch peaks, reduce false alarms and downtime.

• Smart Cities: protect critical sensors (fire, flood) during network events.

Benefits include lower retransmissions (energy), SLA compliance, better user experience, and
avoided infrastructure costs.

5 Integration Blueprint

We propose a lightweight prediction module at the edge (gateway) or cloud:

1. Learn from local time series (loss, delay, queue sizes, PDR).

2. Predict short-term loss ratio (10–60 s horizon).

3. Act via proactive policies:

• rate/window adaptation,
• priority scheduling for critical frames,
• RPL route adjustments or MAC rescheduling,
• dynamic CoAP parameters (retransmissions, timeouts).

The complete architecture of this workflow is illustrated in Figure 1, which shows how
data are collected, preprocessed with a sliding window, fed into the ED–LSTM predictor, and
translated into proactive control actions with feedback for continual learning.

Compatibility: CoAP/UDP, RPL/6LoWPAN, IEEE 802.15.4. Progressive adoption without
protocol overhaul.

6 Methods at a Glance

Preprocessing: normalization, train/test split, sliding window.
Training: Keras; RMSProp/Adam; 1–2 layers, 20–128 units.
Evaluation: RMSE, MAE, MSE with 95% CIs over 10 runs.
Insight: MAE changes little across models (less sensitive to large errors); RMSE highlights
ED-LSTM superiority.

Figure 2 illustrates how ED–LSTM predictions closely follow observed loss ratios while
providing short-horizon anticipation and smoothing of congestion spikes.

7 Limitations & Next Steps

Simulation is high-fidelity but controlled; next, pilot deployments (heterogeneous radios, real
interference). Enrich features (delay, duty-cycle, queue) and close the loop with an online
proactive controller to quantify end-to-end gains (goodput, latency, energy).

Questions and Answers

Why not simple loss thresholds? They react late and ignore dynamics; prediction enables
advance action.
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Figure 1: End-to-end pipeline: data → sliding window → ED–LSTM prediction → proactive actions.
Feedback closes the loop for continual learning.
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Figure 2: Illustrative observed vs. predicted loss ratio (toy example) showing short-horizon anticipation
and smoothing.

Why ED-LSTM? Encoder–decoder captures temporal dependencies and handles variable-
length patterns better.
Where does it run? Preferably on gateways (edge) for immediacy; cloud if local resources are
tight.

Glossary

• Loss ratio: proportion of packets lost over packets transmitted.

• Sliding window: method to turn a time series into supervised examples using the m last
points.

• ED-LSTM: encoder–decoder long short-term memory, a recurrent neural network archi-
tecture that models variable-length sequences.

• RPL: IPv6 Routing Protocol for Low-power and Lossy Networks.

• CoAP: Constrained Application Protocol, a lightweight RESTful protocol over UDP.
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