

Azure DevOps – Continuous Integration (CI) for SharePoint Development

Sep 2019

2019 Sogeti. All rights reserved. Azure DevOps for SPFx 2

Revision History

Version Name Revision description Date

1.0 Manjunath Poola Final Version 10/09/2019

2019 Sogeti. All rights reserved. Azure DevOps for SPFx 3

Table of Contents

1. Introduction .. 4

 Continuous Integration (CI) .. 4

2. Conclusion .. 11

3. References ... 12

2019 Sogeti. All rights reserved. Azure DevOps for SPFx 4

1. Introduction

Azure DevOps (Visual Studio Team Services/Team Foundation Server) can be implemented for

development projects where SharePoint Framework is used on O365.

Azure DevOps consists of tools that help developers to implement Continuous Integration, Continuous

Development methodologies in their projects.

This article provides details to setup Azure DevOps with Continuous Integration (CI) to automate

SharePoint Framework builds, unit testing and implementation.

 Continuous Integration (CI)

Developers can integrate code into a shared repository by automatically verifying the build

, unit tests and package the solution using Continuous Integration(CI), whenever there are
new updates to code is submitted to repository.

Continuous Integration using DevOps.

The steps involved to setup Azure DevOps for SharePoint Framework development are :

1. Build Definition Creation
2. Installing NodeJS and dependencies.
3. Execution Unit Test

4. Import Test results
5. Import code coverage information

6. Bundle the solution
7. Package the solution
8. Prepare the artifacts

9. Publish the artifacts

2019 Sogeti. All rights reserved. Azure DevOps for SPFx 5

 Build Definition Creation:

Build definitions can be defined as a process template.It is a set of configured tasks that
need to be executed in a sequential manner on the source code every time a build is
triggered.

Tasks can be grouped in phases, by default a build definition contains at least one
phase.we can add new tasks to the phase by clicking on the big plus sign next to the phase

name.

The repository can be in GitHub, and the files needs to be visible in Repos. The below

screenshot provides snapshot of a sample Repos.

2019 Sogeti. All rights reserved. Azure DevOps for SPFx 6

We can start Continuous Integration by creating new build definition and linking the same
to repository.

We can select Azure Repos Git option from the above screenshot, and link the repos to the
Pipeline,

 Installing NodeJS and dependencies.

Once the Build Definition has been created, we need to install NodeJS and related dependencies. We

need to ensure to install version 10, as SharePoint Framework depends on it.

2019 Sogeti. All rights reserved. Azure DevOps for SPFx 7

Once the installation is completed, the results are displayed as per the below screenshot.

 Executing Test Cases:

The SharePoint Framework (Ver 1.8.0) doesn’t provide a testing framework by default. We
can leverage JEST# for creating Unit test cases. It is highly recommended at a minimum to

test the business logic of the code to get feedback on any potential issues or regressions as
soon as possible.

2019 Sogeti. All rights reserved. Azure DevOps for SPFx 8

To have Azure DevOps execute your unit tests, add a npm task. Set

the command to custom and custom command field, enter test. Then set the Working

Directory option to $(Build.SourcesDirectory).

Jest is an open JavaScript testing library from Facebook. Its slogan is "Delightful JavaScript Testing". Jest can be used to
test any JavaScript library especially with React and React Native

Configuring Jest

By default SharePoint Framework projects does not include a testing Framework. We can

leverage Jest in this sample.

Install Jest by executing the below command -

npm i chai@4.X jest jest-junit @voitanos/jest-preset-spfx-react16 -D

To configure Jest, create a file config/jest.config.json and add the following content.

{
 "preset": "@voitanos/jest-preset-spfx-react16",
 "rootDir": "../src",
 "coverageReporters": [
 "text",
 "json",
 "lcov",
 "text-summary",
 "cobertura"
],
 "reporters": [
 "default",
 "jest-junit"
]
}

We need to configure the project to leverage jest when typing commands.

To configure we need to edit the package.json file and add/replace these two scripts with

the following values:

"test": "./node_modules/.bin/jest --config ./config/jest.config.json",
"test:watch": "./node_modules/.bin/jest --config ./config/jest.config.json --watchAll"

We need to modify package.json to configure the Reporter.

Reporters are plugins that provide new export formats for test results to test runners. To

do so edit package.json and add these lines after the scripts property.

"jest-junit": {
 "output": "temp/test/junit/junit.xml",
 "usePathForSuiteName": "true"
 }

2019 Sogeti. All rights reserved. Azure DevOps for SPFx 9

Writing a unit test

For creating the first unit test, create a new file:

src/webparts/<webPartName>/tests/<webPartName.spec.ts> and add the following content:

/// <reference types="mocha" />
import {assert, expect} from 'chai';

describe("webPartName", () => {
 it("execute something", () => {
 assert.ok(true, 'should be true');
 });
 it("should add numbers Sync fluent", () => {
 const result:number = 1 + 3;
 expect(result).to.eq(4); // fluent API
 });
});

 Importing test results

In order to get test results information attached with the build results, we need to import
these test results from the test runner into Azure DevOps.

The following steps needs to be configured:

 Add a new Publish Test Results task.

 Set the Test results files field to temp/test/junit/junit.xml

 Set the Searchfolder to $(Build.SourcesDirectory).

 Importing code coverage information

To get code coverage reported with the build status we need to add a task to import code

coverage details. To configure the code coverage information, add the task - publish code

coverage results. Ensure that we set the tool to:

 Cobertura, Summary files to $(Build.SourcesDirectory)/temp/test/cobertura-coverage.xml

 Report Directory to $(Build.SourcesDirectory)/temp/test.

 Bundling the solution

We need to bundle the solution to get static assets that can be understood by a web

browser.

Add another gulp task, set the gulpfile path, set the Gulp Tasks field to bundle and add --
ship in the Arguments.

2019 Sogeti. All rights reserved. Azure DevOps for SPFx 10

 Packaging the solution

Now we have the static assets, the next step is to combine the assets into a package

SharePoint will be able to deploy.

Add another gulp task, set the gulpfile path, set the Gulp Tasks field to package-solution and

add --ship in the Arguments.

 Preparing the artifacts

By default, an Azure DevOps build doesn’t retain any files. To ensure that the required files

needed for the release are retained, we need to explicitly indicate which files should be

retained.

Add a Copy Files task and set the Contents to ***.sppkg (the SharePoint Package created with the

previous task) and the target folder to $(build.artifactstagingdirectory)/drop.

 Publishing the artifacts

We have now collected all the files needed for deployment in a special artifacts folder, we

still need to instruct Azure DevOps to keep these files after the execution of the build.

To do so add a Publish artifacts task and set the

Path to publish to $(build.artifactstagingdirectory)/drop and Artifact name to drop.

2019 Sogeti. All rights reserved. Azure DevOps for SPFx 11

2. Conclusion

Building and Testing are the main activities of the continuous integration task. Continuous

Integration helps to automate the build process when development of a solution by the

project team, and when development cycles are undergoing continuous changes. Azure

DevOps helps to automate the development builds of SPFx solution.

Some of the technical benefits of CI are :

 Helps to execute the test cases using the central code repository, and this helps to spot

any integration issues.

 Better code control, and code management

2019 Sogeti. All rights reserved. Azure DevOps for SPFx 12

3. References

S.No. Reference

1. AzureDevOps for CI/CD Implementation

https://docs.microsoft.com/en-us/sharepoint/dev/spfx/toolchain/implement-ci-cd-with-azure-devops

About Sogeti

Sogeti is a leading provider of technology and engineering services.
Sogeti delivers solutions that enable digital transformation and
offers cutting-edge expertise in Cloud, Cybersecurity, Digital
Manufacturing, Digital Assurance & Testing, and emerging
technologies. Sogeti combines agility and speed of implementation
with strong technology supplier partnerships, world class
methodologies and its global delivery model, Rightshore®. Sogeti
brings together more than 25,000 professionals in 15 countries,
based in over 100 locations in Europe, USA and India. Sogeti is a
wholly-owned subsidiary of Capgemini SE, listed on the Paris Stock
Exchange.

Learn more about us at www.sogeti.com

This document contains information that may be privileged or

confidential and is the property of the Sogeti Group.

Copyright © 2019 Sogeti.

http://www.sogeti.com/

