
(Agile) development needs (agile) testing and one-team vision
10 tips for implementing agile development with quality

Along the (not so long) story of software engineering, we have experienced a continuous
transformation for improvement, in terms of more industrialized, faster and higher quality
development. We keep on continuously improving the way we develop software, as an intrinsic
part of business and society, pushed by a changing context in the way we consume and access
software. “Change is the only constant in life”. We need to respond to two main aims: Firstly,
we need to deliver software faster. Secondly, we need to improve quality in an changing,
challenging and more complex world, because software defects and low quality directly impact
the business (reputation, business processes behavior and associated revenue, user experience,
social consequences…).

In this context, agile is a development approach that inspires a transformation wave in almost
all organizations, in conjunction with the DevOps vision. However, agile does not mean (only)
going faster by doing (more or less) the same. We change because we want to work better. And
if this is the aim, no agile implementation can be really agile unless (1) agile testing and
continuous quality assurance are considered and applied as key activities of software
development, and (2) teams become really one-team mind-shaped, with diverse profiles
(developers, business, architecture experts, UX, testers,…) aimed at working together. And this
usually requires cultural changes, and a plan to re-skill technical capabilities and cross-wise
abilities.

In this post, let me explain you my top 10 tips for implementing agile development with focus
on delivering software continuously with quality:

1. Understand and spread agile mindset
Agile development, in a nutshell, means continuous incremental development in iterations with
continuous feedback for improving next iterations, based on a one-team vision aimed at working
on a same objective: continuously delivering software with enough speed and quality/value.
Two common characteristics of working teams aimed at implementing agile approaches are:

 Incremental & iterative: Structure development objectives in short cycles that finish
with working software and feedback.

 Cooperative & adaptative: Emphasize collaboration and communication and respond
quickly and as early as possible to everyday changes.

“Without enough continuous quality feedback, no agile development iterations exist”.

2. Setting up agile teams with one-team vision

Continuous approvals between departments as a fragmented responsibility chain based on an
organization with professionals belonging to field departments is not agile. The product is the
center in agile, and the agile team is responsible for incrementally improving the product at any
time with quality, by following a one-team vision. For a rich one-team vision, diverse people
need to collaborate from the beginning to the end, applying the most of pairing tasks and
cocreation. Because the mix of different points of view and expertise working together is the
essence of agile.

When creating an agile team, we need to take into account:

 Set up a diverse team. Typically (taking SCRUM as a popular example) a Product Owner
for leading the product, and a SCRUM master for leading the process and the team
improvement are designated. Then, mix valuable people: business, developers,
architect, UX expert, and for sure, tester and quality assurance roles. Each member is
part of a valuable chain, even if they are not 100% assigned to an agile team.

 State, at least, five common objectives/responsibilities: (1) Incrementally improve the
product, (2) deliver valuable software which means software with quality, (3)
incrementally improve how we work, (4) individually and commonly be up-to-date and
trained regarding modern technologies, and (5) pair tasks and point of views.

3. Push for continuous quality as a shared team objective

Continuous quality assurance is the insurance but also the promoter for achieving valuable
software. It is about testing in different levels, but also about disambiguate and make
requirements testable, about code analysis, about quality measurement, about expectations
management, about user experience… The value of the delivered software can rapidly decrease
and impact business if quality is not a stablished shared objective of agile teams. This motivates
sometimes the necessity of a “Quality Lead”, for promoting quality and technical excellence, for
measuring quality status and for monitoring how quality evolves, as critical feedback iteration
by iteration.

A typical question is who tests in agile, and where to test. Since there are different sources of
potential defects, we need to test at different levels. Defects may be caused when programmers
write code contributions in isolation, when this code contributions are merged with others,
when user stories are not clearly understood, when integrating different products that are part
of the same end-to-end business processes, when putting new versions into production
environments, etc. Defects may also be of different types: functional, performance, security,
usability... Therefore, testing activities need to be done by different professionals in agile. For
example, developers should write their own unit test cases and analyze its code as shift-left
quality assurance techniques and some integration test cases, while other integration and
acceptance functional tests should be usually performed by testing roles, which need to be part
of the user stories writing from the beginning. Some types of testing (performance, security,
mobile, etc…) may require, depending on the project, specialized testing professionals to be part
of different agile teams. Furthermore, we have testing aimed at validating new functionalities,
and testing aimed at validating that new changes do not break previously validated functions
(regression testing). And finally, test cases may be executed manually or even automatically.
So… someone is still going to think that testing is not a critical activity in agile, that requires a
strategy within agile projects?

Another typical question: how different is testing when working in agile? Testing is not even
more a late phase in the development. Therefore, testing is a continuous activity during the agile
development, at different levels, of different types and performed by different roles. It is also
important to note that intelligence in testing is even more important in agile. As there are
continuous changes in the software in each iteration and release, not all types of testing and at
all levels can be executed. This situation requires: (1) more prioritization of test cases, (2) a
strategy of testing balanced with the predicted risk which needs to decide which testing is
applied at iteration, release and organization levels. If you still don’t know about CognitiveQA,
this is an essential solution to support intelligent testing in agile. Bots with reasoning and
predictive models in the background may be robotic members of agile teams that assist in the
collaboration and cocreation that characterizes agile.

4. Avoid creating unfeasible expectations

Agile is also about transparency. And transparency needs to be supported by artifacts,
ceremonies, planning and measurement (see next tips). Going ahead without feasible
expectations should be forbidden in agile. Because all supposed agility rapidly falls down without
aligned expectations. This is why we advocate for concepts like “iteration 0” for planning without
delivering valuable software, but creating valuable organization for the team, or ceremonies
that need to be computed as part of the development time because of their value. And this is
why we work in iterations in which we plan what we can do and what it cannot be done in an
iteration. Agile is about reducing risk in each iteration by setting up feasible ambition in an
incremental process of delivery.

5. Co-create artifacts for driving the agile process

Communication needs to find a balance between face-to-face conversation and explicit artifacts
that drive and support the process, while they are aimed at reducing knowledge debt. In this
context, a specification strategy needs to be defined. Artifacts like user stories are recognized
as agile artifacts, but again, they need to be conceived as co-created artifacts. Every team
member has something to say regarding a user story: business people, for sure. But also testers
(who provide a different way of thinking about corner cases, positive and negative results,
specific scenarios, etc.), UX professionals, developers (who need to clearly understand, and not
assume, what do be implemented), architects (who can put his view on the complexity of
implementation), etc.

Artifacts like user stories are not bureaucracy. If conceived like this, they can be removed.
Instead, use them as co-creation artifacts aimed at pushing for early and continuous
communication. Things will go better if we work around explicit user stories that, while being
created and refined, provide alignment, clarification and work improvement for different team
members.

6. Celebrate ceremonies

Agile ceremonies are the institutionalization of valuable meetings for improving the product,
the process and the team. Sprint reviews in SCRUM, for example, are aimed at following-up the
product, while daily meetings are very short and are aimed at emerging blocking problems as
soon as possible and reviewing day-to-day plans. But we also have, for example, retrospectives
aimed at improving the software development process and the team. The list of items to be
considered and followed-up in the agile process is typically defined in the definition-of-done
(DoD). The DoD needs to incorporate quality assurance & testing activities in order to ensure
that such activities are planned, performed and checked.

7. Plan & measure

The pursue for quality in agile software development requires planning when applying
“industrialized” or large-scaled agile. For example, no sprints prioritization is possible without a
high-level release planning that acts as a roadmap for the product. Or we cannot apply agile
testing without a release and organization strategy (see tip 3). Or another example: we cannot
check if the quality is being decreased or increased across iterations if we don’t have a minimum
set of Quality KPIs (Key Performance Indicators) to objectivize the quality evolution and use it as
feedback to refine the quality assurance strategy.

Agile gives us the opportunity to adapt the quality strategy iteration-by-iteration. This means
planning and taking decisions, which need to be informed and supported by measured quality
evolution.

8. Go for technical excellence

Agile also pushes for technical excellence, which is also the base for improving quality. Being
updated about modern architectures, new tools, new best practices, etc. is essential. This is why
specialized and open-minded people is required for being part of agile teams. Moreover, such
people need to be professionals that participate in communities, further than being closed to
the boundaries of an agile team.

When talking about Sogeti, for example, as a company that provides development and quality
services, we talk about an example of community, with professionals of development, testing,
UX, architecture, business… that share best practices and technical expertise. Such Sogetians
are professionals able to participate in agile projects, with the value-added of being part of a
community of knowledge exchange and expertise evolution with focus on specialization.

9. Manage “agile of agiles”

In large organizations, there is more than one agile team. It means that more than “product owners”,
sometimes we have “subproduct owners” that belong to the same organization. Users use software
as a whole, regardless internal products organization, since business processes usually cross the
boundaries of one single product. This creates the concept of “agile of agiles” (in SCRUM, “Scrum of
Scrums”). It means that a coordination between agile teams need to exist, stablished as an upper
organization layer, in which, typically, at least all product owners need to collaborate. Moreover,
agile teams (squads) may organize their members across so called chapters, in order to exchange
expertise and knowledge regarding a common discipline.

When managing quality, some activities also need to be planned and performed at “agile of agiles”
level. Regression test automation, for example, should address the most critical business processes
of a company, and therefore it is typically managed at “agile of agiles” level, together with a master
test & quality strategy, software products ambition or cross-wise architectural blueprints.

This is what we have as a great value in Sogeti: chapters of specialized people in development and
quality assurance & testing in order to be part of agile teams, and to be part of “agile of agiles”
specialized groups.

10. Improve

Agile is not about fundamentalism, it is about continuous improvement in the way we develop
software with quality. Do not forget to be questioning the way we work continuously, and how
we can refine it to achieve better results. Learning by doing and improving from success and
failures are a must in agile (like in our life)!

In conclusion

The aim of agile development approaches is twofold: faster continuous development and better
quality. Continuous development activities require continuous feedback, mainly provided by
ceremonies and continuous testing & quality assurance activities. QA activities are an
indissoluble part of agile development, as they are a continuous insurance and leader of quality,
and a main source of continuous feedback. Then, if you want to be more agile, let’s define,
organize and apply an (intelligent and agile) testing and quality strategy. Otherwise, you will
apparently run faster (in the beginning) ... but probably you won’t be as agile as expected.

And what about moving towards DevOps? Hope that you read my next post… ;)

