

APACHE KAFKA Cluster and
Zookeeper Setup/Administration in

AWS

(Abhishek Dhar) abhishek.dhar@capgemini.com 2

 DOCUMENT HISTORY

VERSION DATE AUTHOR CHANGES

1.0 07/07/2018 Abhishek Dhar First Draft of Document

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 3

 Acronyms

ACRONYMS DEFINITION

TCP Transmission Control Protocol

UDP User Datagram Protocol

AWS Amazon Web Service

EC2 Amazon Elastic Cloud

API Application Programming Interface

ACL Access Control List

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 4

TABLE OF CONTENTS

1 OBJECTIVE .. 5

1.1 Objective .. 5

1.2 What is KAFKA .. 5

1.3 ZooKeeper Quorum Architecture ... 7

1.4 KAFKA Cluster Architecture ... 7

1.5 Consolidated Architecture ... 8

2 ZOOKEEPER .. 8

2.1 What is Zookeeper .. 8

2.2 What is Zookeeper’s role in KAFKA .. 9

2.3 Zookeeper quorum sizing .. 9

2.4 Zookeeper configuration ... 10

3 AWS SETUP ... 10

3.1 zookeeper aws setup ... 10

3.2 Single zookeeper machine setup .. 14

3.3 Zookeeper command line interface .. 17

3.4 Zookeeper Quorum setup – PART 1 .. 17

3.5 Zookeeper Quorum setup – PART 2 .. 19

4 WEB TOOLS AWS EC2 MACHINE (DOCKER) .. 20

4.1 Management tools for zookeeper (ZooNavigator) .. 23

5 KAFKA... 23

5.1 KAFKA Cluster size ... 23

5.2 KAFKA configuration ... 24

5.3 KAFKA setup in AWS .. 25

5.4 single kafka broker setup ... 29

5.5 KAFKA multi cluster setup ... 32

5.6 Testing the kafka cluster and connecting from Outside ... 34

5.7 KAFKA Manager for Cluster Management .. 34

6 INSTALLING KAFKA TOPICS UI, CONFLUENT REST PROXY AND SCHEMA 60

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 5

1 OBJECTIVE

1.1 OBJECTIVE

This document is not intended to illustrate or talk about KAFKA since there are plenty of online resources
available that discusses KAFKA. This document however aims to illustrate how to do a KAFKA Cluster setup in
Amazon AWS and then leverage the infrastructure to create scalable applications.

Intention

1. One Cluster Setup in production in AWS
2. Zookeeper

a. Setup, usage and maintenance
3. KAFKA Setup

a. Setup, configuration, maintenance, settings and optimization, recovery
4. Tools setup

a. ZooNavigator
b. KAFKA Manager (Administrative tasks)
c. Confluence schema registry
d. Landoop KAFKA Topics UI

1.2 WHAT IS KAFKA

Kafka® (http://kafka.apache.org/) is used for building real-time data pipelines and streaming apps. It is
horizontally scalable, fault-tolerant, wicked fast, and runs in production in thousands of companies.

Figure 1. KAFKA (http://kafka.apache.org/)

Kafka is generally used for two broad classes of applications:

• Building real-time streaming data pipelines that reliably get data between systems or applications

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 6

• Building real-time streaming applications that transform or react to the streams of data

To understand how Kafka does these things, let's dive in and explore Kafka's capabilities from the bottom up.

First a few concepts:

• Kafka is run as a cluster on one or more servers that can span multiple datacenters.
• The Kafka cluster stores streams of records in categories called topics.
• Each record consists of a key, a value, and a timestamp.

Figure 2. KAFKA Aspects (http://kafka.apache.org/)

Kafka has four core APIs:

• The Producer API allows an application to publish a stream of records to one or more Kafka topics.
• The Consumer API allows an application to subscribe to one or more topics and process the stream of

records produced to them.
• The Streams API allows an application to act as a stream processor, consuming an input stream from

one or more topics and producing an output stream to one or more output topics, effectively
transforming the input streams to output streams.

• The Connector API allows building and running reusable producers or consumers that connect Kafka
topics to existing applications or data systems. For example, a connector to a relational database
might capture every change to a table

In Kafka the communication between the clients and the servers is done with a simple, high-performance,
language agnostic TCP protocol. This protocol is versioned and maintains backwards compatibility with older
version. We provide a Java client for Kafka, but clients are available in many languages.

mailto:abhishek.dhar@capgemini.com
http://kafka.apache.org/documentation.html#producerapi
http://kafka.apache.org/documentation.html#consumerapi
http://kafka.apache.org/documentation/streams
http://kafka.apache.org/documentation.html#connect
https://kafka.apache.org/protocol.html
https://cwiki.apache.org/confluence/display/KAFKA/Clients

(Abhishek Dhar) abhishek.dhar@capgemini.com 7

1.3 ZOOKEEPER QUORUM ARCHITECTURE

 Figure 3. Zookeeper Quorum

Zookeeper is a distributed key value store and has voting mechanism.

1.4 KAFKA CLUSTER ARCHITECTURE

Figure 3. KAFKA and ZooKeeper co located

Resilient and Distributed Robust Architecture dictates that we have three EC2 servers in three availability zones
(So if one goes down we still have two working) which are hosting ZooKeeper and KAFKA brokers. In ZooKeeper
there is one leader and two followers, and all KAFKA brokers talk to ZooKeeper leader.

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 8

1.5 CONSOLIDATED ARCHITECTURE

Figure 4. Consolidated Architecture

We shall have one more EC2 instance Tools with DOCKER which is going to host all Tools that we would need in
order to control/manage and do administration of KAFKA Brokers and Zookeeper Servers.

NOTE:

• Zookeeper and KAFKA clusters must know their Hostname and/or IP and a reboot should not change
the IP/Host-Name

o We have to use Elastic Public IP accessible from outside
o We can also use secondary ENI (constant private IP) and not accessible from outside and

accessible from within network
o If we use DNS then we don’t have to keep track of IP but constraint of public/private DNS

applies here

2 ZOOKEEPER

2.1 WHAT IS ZOOKEEPER

It is must for distributed application (it is almost like a filesystem). It has capability to do configuration
management of distributed systems and it has ability to do self-election and consensus building (leader
election). It also does coordination and Locks. For case of KAFKA, it stores the KEY VALUE pairs. This is major
cornerstone for HADOOP as well and is quite stable. We are going to use 3.4.x (Stable Channel).

1. Zookeeper internal data structure is a Tree (nodes)
2. Each node is called zNode
3. Each node has a Path
4. Each node can be persistent (stay alive) or ephemeral (disconnects)
5. Each node can store data
6. Each zNode can be monitored for changes

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 9

Figure 4. Zookeeper

2.2 WHAT IS ZOOKEEPER’S ROLE IN KAFKA

Zookeeper keeps track of KAFKA brokers via Heart-Beat mechanism (if a broker doesn’t send heart-beat then
ZooKeeper assumes that broker to be dead) and also broker registration.

Zookeeper also maintains list of Topics (Configurations, partitions, replication factors, additional configuration,
list of SYNC replicas)

It also does Broker Leader election in case leader Broker (Controller) goes down.

It also stores the KAFKA cluster ID and if security is enabled then it also stores ACL (Access control list) for
Topics/Consumer Groups and Users.

Note: Consumer Offsets are now stored in KAFKA and not maintained by Zookeeper anymore

2.3 ZOOKEEPER QUORUM SIZING

Since ZooKeeper needs to select a leader when one goes down and that voting has to be very strict and hence
we cannot have even number of servers and we need to have odd number of servers (2N+1) and hence for 2N+1
servers, we can afford to lose N servers and still Zookeeper can function and elect leader. Having only one
Zookeeper is neither resilient and nor distributed.

Figure 5. Zookeeper Quorum size of Three (Adopted)

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 10

2.4 ZOOKEEPER CONFIGURATION

Figure 6. Zookeeper.Properties File

1. Specifies where ZooKeeper stores data
2. Specifies the port at which client will connect
3. How many clients can connect with zookeeper (0 is unlimited)
4. 2 Seconds is the Heart Beat Time
5. Init Time (10 * 2000 milliseconds) is used for initial synchronization
6. Sync Limit specifies the time of ticks requires to receive an acknowledge for a request
7. It also defines the ZooKeeper clusters of three servers and the PORTS it needs to open up

3 AWS SETUP

3.1 ZOOKEEPER AWS SETUP

Create an account in https://console.aws.amazon.com and select a region that is closest to you. Then search for
a service called VPC and then select subnets (For Mumbai region there are two subnets but we atleast need
three subnets and hence switch to some other region like Singapore and then keep a track of Availability zones
corresponding to the subnets)

mailto:abhishek.dhar@capgemini.com
https://console.aws.amazon.com/

(Abhishek Dhar) abhishek.dhar@capgemini.com 11

Figure 7. VPC Subnets in Singapore region

Figure 8. Subnets mapped to Availability Zones after sorting IPv4 security Field

Then search for a service called EC2 and then click on Launch instance (We are going to create our EC2
instances now). The select “Ubuntu Server 16.04 LTS (HVM), SSD Volume Type” and then select instance type
as “t2.medium” and then click on “Next Configure Instance Details (Do Not Click Configure/Launch)”

Keep instance count as 1 and come to section subnet and then select the availability zone corresponding to
173.31.0.0/20 (In my case as seen above it is C)

The go to Network Interface (Scroll down) and set the below provided IP (172.31.9.1). If you cannot set this IP
then it means you have chosen the wrong subnet and hence go back and rectify that

Figure 8. Setting Network Interface

The go down and click “Add Storage”

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 12

Figure 8. Configuring Storage for Instance

Figure 9 Adding TAGS to identify the Server

Figure 10 Setting Security Group for ZooKeeper

We use IP 172.31.0.0/16 for accessing Zookeeper ports 2181/2888/3888 and you can either allow all IPs to
access Zookeeper (not recommended) or keep only MY IP to access the same. Then click on review and lunch
and in the review screen you have review your settings made for ZooKeeper.

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 13

Figure 11 Creating a New Key Pair to SSH into instance

Create a new KEY PAIR and download the file and save it securely before clicking on Launch Instances.

Figure 12 Ensuring not losing IP on Termination

Click on Network Interfaces from below under Description. Then click on interface id and then right click on
the instance and select change termination behavior and we uncheck delete on termination. So we never
lose the Private IP. If we go back to instances, we shall see our created instance in running state with a Public
IP (In the description tab below)

Download and install PUTTY so that we can SSH into the instance we created. Follow this tutorial

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 14

https://linuxacademy.com/howtoguides/posts/show/topic/17385-use-putty-to-access-ec2-linux-instances-
via-ssh-from-windows

3.2 SINGLE ZOOKEEPER MACHINE SETUP

SSH into the machine and run these commands

sudo apt-get update && \
sudo apt-get -y install wget ca-certificates zip net-tools vim nano tar netcat

Java Open JDK 8

sudo apt-get -y install default-jdk
java -version

Disable RAM Swap - can set to 0 on certain Linux distro and persist it across reboot

sudo sysctl vm.swappiness=1
echo 'vm.swappiness=1' | sudo tee --append /etc/sysctl.conf

mailto:abhishek.dhar@capgemini.com
https://linuxacademy.com/howtoguides/posts/show/topic/17385-use-putty-to-access-ec2-linux-instances-via-ssh-from-windows
https://linuxacademy.com/howtoguides/posts/show/topic/17385-use-putty-to-access-ec2-linux-instances-via-ssh-from-windows

(Abhishek Dhar) abhishek.dhar@capgemini.com 15

Add hosts entries (mocking DNS) - put relevant IPs here (IPs provided below should be good)

echo "172.31.9.1 kafka1

172.31.9.1 zookeeper1

172.31.19.230 kafka2

172.31.19.230 zookeeper2

172.31.35.20 kafka3

172.31.35.20 zookeeper3" | sudo tee --append /etc/hosts

download Zookeeper and Kafka. Recommended is latest Kafka (0.10.2.1) and Scala 2.12

wget http://apache.mirror.digitalpacific.com.au/kafka/0.10.2.1/kafka_2.12-0.10.2.1.tgz
tar -xvzf kafka_2.12-0.10.2.1.tgz
rm kafka_2.12-0.10.2.1.tgz
mv kafka_2.12-0.10.2.1 kafka
cd kafka/

Zookeeper quickstart (This is just to test if Zookeeper can start)
bin/zookeeper-server-start.sh config/zookeeper.properties

Start Zookeeper in the background

bin/zookeeper-server-start.sh -daemon config/zookeeper.properties

Test Zookeeper

bin/zookeeper-shell.sh localhost:2181

ls /

demonstrate the use of a 4 letter word (it should say “imok”)

echo "ruok" | nc localhost 2181 ; echo

Install Zookeeper boot scripts (Put the content of script below in this file and SAVE)

sudo nano /etc/init.d/zookeeper

#!/bin/bash
#/etc/init.d/zookeeper
DAEMON_PATH=/home/ubuntu/kafka/bin
DAEMON_NAME=zookeeper
Check that networking is up.
#[${NETWORKING} = "no"] && exit 0

PATH=$PATH:$DAEMON_PATH

See how we were called.
case "$1" in
 start)
 # Start daemon.
 pid=`ps ax | grep -i 'org.apache.zookeeper' | grep -v grep | awk '{print $1}'`
 if [-n "$pid"]
 then

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 16

 echo "Zookeeper is already running";
 else
 echo "Starting $DAEMON_NAME";
 $DAEMON_PATH/zookeeper-server-start.sh -daemon

/home/ubuntu/kafka/config/zookeeper.properties
 fi
 ;;
 stop)
 echo "Shutting down $DAEMON_NAME";
 $DAEMON_PATH/zookeeper-server-stop.sh
 ;;
 restart)
 $0 stop
 sleep 2
 $0 start
 ;;
 status)
 pid=`ps ax | grep -i 'org.apache.zookeeper' | grep -v grep | awk '{print $1}'`
 if [-n "$pid"]
 then
 echo "Zookeeper is Running as PID: $pid"
 else
 echo "Zookeeper is not Running"
 fi
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|status}"
 exit 1
esac

exit 0

Install Zookeeper boot scripts

sudo chmod +x /etc/init.d/zookeeper

sudo chown root:root /etc/init.d/zookeeper

you can safely ignore the warning

sudo update-rc.d zookeeper defaults

stop zookeeper

sudo service zookeeper stop

stop zookeeper

sudo service zookeeper stop

verify it's stopped

nc -vz localhost 2181

start zookeeper

sudo service zookeeper start

verify it's started

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 17

nc -vz localhost 2181

echo "ruok" | nc localhost 2181 ; echo (it should say “imok”)

check the logs

cat logs/zookeeper.out

3.3 ZOOKEEPER COMMAND LINE INTERFACE

Starting Zookeeper and connecting to it

sudo service zookeeper start
ubuntu@ip-172-31-9-1:~/kafka$ bin/zookeeper-shell.sh localhost:2181

display help

help

display root and create a Node

ls /
create /my-node "foo"
ls /

Get data corresponding to nodes created

get /my-node
get /zookeeper

Create Deeper Nodes inside Zookeeper

create /my-node/deeper-node "bar"
ls /
ls /my-node
ls /my-node/deeper-node
get /my-node/deeper-node

removes are recursive
rmr /my-node
ls /

create a watcher
create /node-to-watch ""
get /node-to-watch true
set /node-to-watch "has-changed"
rmr /node-to-watch

3.4 ZOOKEEPER QUORUM SETUP – PART 1
Right click on instance in the dashboard and select “Create Image” (We create AMI image so that we
can replicate setup on all instances for setting up Zookeeper quorum). This will create a new Image
(Open up two screens snapshot screen and image screen in order to check if image/snapshot has been
created or not and this takes about 5-Mins)

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 18

 Figure 13 Zookeeper AMI Image

When image/snapshot is created then while being in AMI screen click Launch. Then select General
Purpose (T2.Medium) and click Configure Instance Details.

The first was created using SUBNET C and this time we select next in line and that is SUBNET B and
then scroll down and select primary IP as 172.31.19.230 and then click “Add Storage” and don’t
change anything (8GB) and then click on Add Tags. (Name and Server 2) and then click on Security
Group. Instead of creating a new security group use the old one “kafka-zookeeper” previously created
security group and then click Review and Launch and Launch. Use the existing KEY PAIR we created
earlier “kafkaSetting”. The click on View Instances and we shall see that second instance getting
created.

GO back again to AMI in main Dashboard (left Pane) and select the one created earlier “Kafka-
Zookeeper” and right click and click on Launch and then select (General Purpose T2.Medium) and this

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 19

time in the configuration screen select SUBNET A. The scroll down and select Primary IP as
172.31.35.20. The select Add Storage and keep everything same and then select Add Tags and name
this instance (Name and Server 3) and then click on Security Group. Instead of creating a new security
group use the old one “kafka-zookeeper” previously created security group and then click Review and
Launch and Launch. Use the existing KEY PAIR we created earlier “kafkaSetting”. The click on View
Instances and we shall see that second instance getting created.

Figure 13 Three Instances of Quorum Launched

Open three PUTTY windows and connect to all these three servers created independent (Use the same
KEY for authentication). Upon logging if we do ls then we should get kafka in all three terminals
suggesting that three instances has been created from same AMI image.

3.5 ZOOKEEPER QUORUM SETUP – PART 2

Execute command “sudo service zookeeper start” in all the three servers opened via SSH through
PUTTY in order to start Zookeeper in all the three instances and then run command “nc -vz localhost
2181” and check for success message in all three instances.

Instead of using localhost in the above command use zookeeper1 in first server and check if it works
same (We did setup Mock DNS previously for this to work). The run “nc -vz zookeeper1 2181” from
second server and check if second server can connect to first server or not and then run the same
command from server 3 and check if that also can connect to server 1. Then run the same command
“nc -vz zookeeperx 2181” in all three instances (Where x stands for 1, 2 or 3) in order to check whether
server 1 server 2 and server 3 all can talk amongst themselves via mock DNS name of zookeeperx.

Then run command “sudo service zookeeper stop” to stop zookeeper in all the three servers. Then
create Data Dictionary in all the three instances by running this command in all three “sudo mkdir -p
/data/zookeeper” and then make UBUNTU as owner of that directory by running this command “sudo
chown -R ubuntu:ubuntu /data/”. Then run this command in server 1 “echo "1" >
/data/zookeeper/myid” to declare server identity for first server as 1 (Repeat the same for server 2
and server 3 and replace echo 1 with echo 2 and echo 3 for server 2 and server 3 respectively). You can

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 20

run cat /data/zookeeper/myid in all three servers to determine if what was written as server ID got
reflected properly or not. Then run this command in all three “rm
/home/ubuntu/kafka/config/zookeeper.properties” to remove default properties and then run “nano
/home/ubuntu/kafka/config/zookeeper.properties” in all three to create a new property file.

The create this configuration in all three servers file (Save CTRL+X Y Enter)

the location to store the in-memory database snapshots and, unless specified otherwise, the
transaction log of updates to the database.
dataDir=/data/zookeeper
the port at which the clients will connect
clientPort=2181
disable the per-ip limit on the number of connections since this is a non-production config
maxClientCnxns=0
the basic time unit in milliseconds used by ZooKeeper. It is used to do heartbeats and the minimum
session timeout will be twice the tickTime.
tickTime=2000
The number of ticks that the initial synchronization phase can take
initLimit=10
The number of ticks that can pass between
sending a request and getting an acknowledgement
syncLimit=5
zoo servers
these hostnames such as `zookeeper-1` come from the /etc/hosts file
server.1=zookeeper1:2888:3888
server.2=zookeeper2:2888:3888
server.3=zookeeper3:2888:3888

Enter directory kafka and verify by running cat config/zookeeper.properties in all three instances. The
starting from first server and then second and then run this command (Don’t bother about error, that
will be resolved when zookeeper runs in all three), “sudo service zookeeper start” (Once you run in all
three servers, one will assume LEADER role and other two will assume FOLLOWER role)

Then run this command “echo "ruok" | nc zookeeperx 2181 ; echo” in first/second/third server and x
stands for 1/2/3 (We should get “imok” in all three cases for all three servers)

Then run this command “echo "stat" | nc zookeeperx 2181 ; echo” in first server and x stands for 1/2/3
(We should get Mode: follower for two servers and Mode: leader for one)

Run ZooKeeper SHELL in all three servers by running command in all three (bin/zookeeper-shell.sh
zookeeperx:2181 replace “x” with 1 when running in first server and 2 when running in second server
and 3 when running in third server) and then running ls / command in all three shall return zookeeper

4 WEB TOOLS AWS EC2 MACHINE (DOCKER)

Go to dashboard and Launch an Instance and select “Ubuntu Server 16.04 LTS (HVM), SSD Volume Type”
and then select “T2.Small” and there is no need to add subnet or IP in configure instance details screen.
Default data in storage screen is also fine and no need to make any changes. Then add a KEY VALUE pair
(Name Web Tools) in Add Tags screen.

We however create a new Security Group for Web Tools.

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 21

Figure 14 Security Group Settings for Web Tools

Launch the Web Tools with the same KEY VALUE Pair created earlier and connect to this instance using
SSH.

Run these commands
sudo apt-get update

Install packages to allow apt to use a repository over HTTPS (Required for DOCKER):
sudo apt-get install -y \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common

Add Docker’s official GPG key:
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add –

set up the stable repository.
sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

install docker
sudo apt-get update
sudo apt-get install -y docker-ce docker-compose

give ubuntu permissions to execute docker
sudo usermod -aG docker $(whoami)
log out
exit
log back in

make sure docker is working
docker run hello-world

If everything works fine then this is the output you should be getting

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
9bb5a5d4561a: Pull complete

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 22

Digest: sha256:3e1764d0f546ceac4565547df2ac4907fe46f007ea229fd7ef2718514bcec35d
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (amd64)
 3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
 https://hub.docker.com/

For more examples and ideas, visit:
 https://docs.docker.com/engine/userguide/

Add hosts entries (mocking DNS) - put relevant IPs here
echo "172.31.9.1 kafka1
172.31.9.1 zookeeper1
172.31.19.230 kafka2
172.31.19.230 zookeeper2
172.31.35.20 kafka3
172.31.35.20 zookeeper3" | sudo tee --append /etc/hosts

Check by running “nc -vz zookeeper1 2181” whether we can connect to ZooKeeper1 Server

mailto:abhishek.dhar@capgemini.com
https://docs.docker.com/engine/userguide/

(Abhishek Dhar) abhishek.dhar@capgemini.com 23

4.1 MANAGEMENT TOOLS FOR ZOOKEEPER (ZOONAVIGATOR)

Connect to Web Tool AWS EC2 instance we created via SSH. Create a new file by doing “nano
zoonavigator-docker-compose.yml” and paste the following content into it.

Now run this command “docker-compose -f zoonavigator-docker-compose.yml up -d”. It will pull all
Docker images and create all Docker containers. Verify by giving command docker ps

Open a Browser and Navigate to http://13.250.44.236:8001/connect (IP address in your case is the
Public IP of Web Tools EC2 instance) and for connection string use this
“zookeeper1:2181,zookeeper2:2181,zookeeper3:2181” and that opens a UI allowing you to create
NODES in Zookeeper.

5 KAFKA

5.1 KAFKA CLUSTER SIZE

 Figure 15 Three Broker Cluster Configuration

mailto:abhishek.dhar@capgemini.com
http://13.250.44.236:8001/connect

(Abhishek Dhar) abhishek.dhar@capgemini.com 24

N-1 Brokers can be down if N is default topic replication factor. Producer consumer requests are going to
be spread out amongst different machines. Data is also going to be spread out amongst different brokers.

5.2 KAFKA CONFIGURATION

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 25

5.3 KAFKA SETUP IN AWS

Go to Volumes in Main Dashboard and then select “Create Volume”. Create Three Volumes in three
availability zones(A, B and C) with same configuration for rest of the parameters.

 Figure 16 Creating Volumes for Three Servers

Go to dashboard and select each volume freshly created and then select “Attach Volume” and associate one
with Server 1, another with Server 2 and another with Server 3 and then in Dashboard give name (Kafka Data
Server x where x is 1/2/3)

Figure 17 Attaching the three volumes created with three servers and Name

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 26

Then go to Dashboard and select Security Group and select the pre-existing one “Kafka Zookeeper” and make
this change in Inbound traffic (basically allowing inbound traffic in port 9092)

Figure 18 Modify Security Group to associate KAFKA Traffic

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 27

Then login to all the three servers via PUTTY and make sure you are in root folder. Execute following commands
to mount /dev/xvdf as /dev/kafka and then restart zookeeper

Then run these commands in all shell to check if /dev/xvdf has been mounted or not and after starting zookeeper
check if it has properly started or not

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 28

 Figure 19 Restart Zookeeper and check if /dev/xvdf has been mounted

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 29

5.4 SINGLE KAFKA BROKER SETUP

Enter into all three servers are increase maximum count of open file handles by running this command
Add file limits configs - allow to open 100,000 file descriptors

echo "* hard nofile 100000
* soft nofile 100000" | sudo tee --append /etc/security/limits.conf

reboot for the file limit to be taken into account
sudo reboot

restart zookeeper
sudo service zookeeper start

Then work with server 1 only and create server.properties file in server 1 (inside kafka) after removing
config/server.properties inside kafka folder and then create a new file by doing nano config/server.properties
and paste this content

############################# Server Basics #############################

The id of the broker. This must be set to a unique integer for each broker.
broker.id=1
change your.host.name by your machine's IP or hostname
advertised.listeners=PLAINTEXT://0.0.0.0:9092

Switch to enable topic deletion or not, default value is false
delete.topic.enable=true

############################# Log Basics #############################

A comma seperated list of directories under which to store log files
log.dirs=/data/kafka

The default number of log partitions per topic. More partitions allow greater
parallelism for consumption, but this will also result in more files across
the brokers.
num.partitions=8
we will have 3 brokers so the default replication factor should be 2 or 3
default.replication.factor=3
number of ISR to have in order to minimize data loss
min.insync.replicas=2

############################# Log Retention Policy #############################

The minimum age of a log file to be eligible for deletion due to age
this will delete data after a week
log.retention.hours=168

The maximum size of a log segment file. When this size is reached a new log segment will be
created.
log.segment.bytes=1073741824

The interval at which log segments are checked to see if they can be deleted according
to the retention policies

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 30

log.retention.check.interval.ms=300000

############################# Zookeeper #############################

Zookeeper connection string (see zookeeper docs for details).
This is a comma separated host:port pairs, each corresponding to a zk
server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
You can also append an optional chroot string to the urls to specify the
root directory for all kafka znodes.
zookeeper.connect=zookeeper1:2181,zookeeper2:2181,zookeeper3:2181/kafka

Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000

############################## Other ##################################
I recommend you set this to false in production.
auto.create.topics.enable=true

Then give permission by running this command (sudo chown -R ubuntu:ubuntu /data/kafka) in all three
servers and then Launch KAFKA Server by running this command “bin/kafka-server-start.sh
config/server.properties” and that should get started KAFKA Server

If you now log into ZooNavigator via Web Browser then you should see KAFKA alongside ZooKeeper.

Then run this command in all the three servers “sudo nano /etc/init.d/kafka” inside KAFKA directory and
paste this content (CTRL+X Y Enter)

#!/bin/bash
#/etc/init.d/kafka
DAEMON_PATH=/home/ubuntu/kafka/bin
DAEMON_NAME=kafka
Check that networking is up.
#[${NETWORKING} = "no"] && exit 0

PATH=$PATH:$DAEMON_PATH

See how we were called.
case "$1" in
 start)
 # Start daemon.
 pid=`ps ax | grep -i 'kafka.Kafka' | grep -v grep | awk '{print $1}'`
 if [-n "$pid"]
 then
 echo "Kafka is already running"
 else
 echo "Starting $DAEMON_NAME"
 $DAEMON_PATH/kafka-server-start.sh -daemon
/home/ubuntu/kafka/config/server.properties
 fi

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 31

 ;;
 stop)
 echo "Shutting down $DAEMON_NAME"
 $DAEMON_PATH/kafka-server-stop.sh
 ;;
 restart)
 $0 stop
 sleep 2
 $0 start
 ;;
 status)
 pid=`ps ax | grep -i 'kafka.Kafka' | grep -v grep | awk '{print $1}'`
 if [-n "$pid"]
 then
 echo "Kafka is Running as PID: $pid"
 else
 echo "Kafka is not Running"
 fi
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|status}"
 exit 1
esac

exit 0

Then make it executable by running this command “sudo chmod +x /etc/init.d/kafka” and “sudo chown
root:root /etc/init.d/kafka” and “sudo update-rc.d kafka defaults” in this order

start kafka
sudo service kafka start

verify it's working
nc -vz localhost 9092

look at the server logs
cat /home/ubuntu/kafka/logs/server.log

status of kafka
sudo service kafka status

Then create TOPIC in KAFKA
create a topic

bin/kafka-topics.sh --zookeeper zookeeper1:2181/kafka --create --topic first_topic --
replication-factor 1 --partitions 3

Then produce data in TOPIC in KAFKA (Before executing this step please modify inside KAFKA
config/server.properties and modify min.insync.replicas=1 because as of now we are running only one
Broker but later on when quorum is setup then change it back to 1)

bin/kafka-console-producer.sh --broker-list kafka1:9092 --topic first_topic
hi
hello
(exit)

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 32

read that data
bin/kafka-console-consumer.sh --bootstrap-server kafka1:9092 --topic first_topic
--from-beginning

list kafka topics
bin/kafka-topics.sh --zookeeper zookeeper1:2181/kafka –list

5.5 KAFKA MULTI CLUSTER SETUP
 Open file inside KAFKA directory in all three server config/server.properties and for first server make
Broker ID as 1 and for second 2 and for third 3. Change Advertised Listeners in First server as
PLAINTEXT://kafka1:9092 and in second server PLAINTEXT://kafka2:9092 and in third server
PLAINTEXT://kafka3:9092 and ensure that min.insync.replicas in all three is set as 2. Save the file in all
three servers.

start kafka

sudo service kafka start
verify it's working

nc -vz localhost 9092
look at the server logs

cat /home/ubuntu/kafka/logs/server.log
status of kafka

sudo service kafka status
if one of the server doesn’t start then please check config/server.properties file and see if BROKER ID is
correctly set. Sometimes if it still doesn’t start then follow this trouble shooting

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 33

GETTING AN ERROR IN SERVER-2 WHILE STARTING KAFKA SERVER
[2018-07-08 20:50:37,888] FATAL Fatal error during KafkaServerStartable startup. Prepare to shutdown
(kafka.server.KafkaServerStartable)

kafka.common.InconsistentBrokerIdException: Configured broker.id 2 doesn't match stored broker.id 1
in meta.properties. If you moved your data, make sure your configured broker.id matches. If you intend to
create a new broker, you should remove all data in your data directories (log.dirs).

Solution:
By changing BROKER ID in meta.properties file from 1 to 2 and then restarted KAFKA Server

ubuntu@ip-172-31-19-230:/tmp$ cd ../../..
ubuntu@ip-172-31-19-230:/$ ls
bin dev initrd.img lib64 mnt root snap tmp vmlinuz
boot etc initrd.img.old lost+found opt run srv usr vmlinuz.old
data home lib media proc sbin sys var
ubuntu@ip-172-31-19-230:/$ cd data/
ubuntu@ip-172-31-19-230:/data$ ls
kafka zookeeper
ubuntu@ip-172-31-19-230:/data$ cd kafka/
ubuntu@ip-172-31-19-230:/data/kafka$ ls
cleaner-offset-checkpoint recovery-point-offset-checkpoint
meta.properties replication-offset-checkpoint
ubuntu@ip-172-31-19-230:/data/kafka$ cat meta.properties

#Sun Jul 08 19:44:26 UTC 2018
version=0
broker.id=1 (Change this to 2 for server 2. This field sometimes doesn’t correspond to

“CONFIG/SERVER.PROPERTIES” and it should correspond to BROKER ID as set in CONFIG/SERVER.PROPERTIES)

ubuntu@ip-172-31-19-230:/data/kafka$ sudo nano meta.properties
ubuntu@ip-172-31-19-230:/data/kafka$ sudo nano meta.properties
ubuntu@ip-172-31-19-230:/data/kafka$

mailto:abhishek.dhar@capgemini.com
https://broker.id/
https://broker.id/
https://meta.properties/
https://broker.id/
https://meta.properties/
https://vmlinuz.old/
https://meta.properties/
https://meta.properties/
https://meta.properties/

(Abhishek Dhar) abhishek.dhar@capgemini.com 34

make sure to fix the __consumer_offsets topic
bin/kafka-topics.sh --zookeeper zookeeper1:2181/kafka --config min.insync.replicas=1 --topic
__consumer_offsets –alter

read the topic on broker 1 by connecting to broker 2!
bin/kafka-console-consumer.sh --bootstrap-server kafka2:9092 --topic first_topic --from-beginning

5.6 TESTING THE KAFKA CLUSTER AND CONNECTING FROM OUTSIDE

Can execute these commands from any server (Can execute this to shell of any of the three brokers).
Replication factor is restricted to number of servers/brokers we have and hence limited to three in our
case.

1. Creating a TOPIC
2. PUBLISH Data to the Topic
3. READ data from the Topic
4. LIST all Topics
5. DELETE a given topic

We need to be able to connect to KAFKA cluster from outside as well. Go to AWS Dashboard and make a
note of each server connection string (The same connection string used to connect to KAFKA cluster)

The easiest way how to reach your Kafka server (version kafka_2.11-1.0.0) on EC2 from consumer in
external network is to change the properties file

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 35

Figure 20 Advertised Listener (public/private IP)

config/server.properties

And modify the following line and add the connection string corresponding to the connection string
for three servers as obtained from Amazon AWS Dashboard. Edit this file in all three servers and
change listeners property to hold the connection string corresponding to that particular server

listeners=PLAINTEXT://ec2-XXX-XXX-XXX-XXX.eu-central-1.compute.amazonaws.com:9092

5.7 KAFKA MANAGER FOR CLUSTER MANAGEMENT
Log into AWS and select Web Tools from Dashboard and modify security group for the same

Figure 21 Adding Port 9000 in Webtool (Accessible)

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 36

Log into (SSH) Web Tool EC2 instance. Execute these commands (First phase of commands to check if we
can connect to Zookeeper and KAFKA independently)

#!/bin/bash

make sure you open port 9000 on the security group

make sure you can access the zookeeper endpoints
nc -vz zookeeper1 2181
nc -vz zookeeper2 2181
nc -vz zookeeper3 2181

make sure you can access the kafka endpoints
nc -vz kafka1 9092
nc -vz kafka2 9092
nc -vz kafka3 9092

copy the kafka-manager-docker-compose.yml file
nano kafka-manager-docker-compose.yml

Insert this content in file Opened
version: '2'

services:
 # https://github.com/yahoo/kafka-manager
 kafka-manager:
 image: qnib/plain-kafka-manager
 network_mode: host
 environment:
 ZOOKEEPER_HOSTS: "zookeeper1:2181,zookeeper2:2181,zookeeper3:2181"
 APPLICATION_SECRET: change_me_please

restart: always

launch it
docker-compose -f kafka-manager-docker-compose.yml up -d

Do a docker ps to check if KAFKA manager is running in Web Tool Instance

Open a web browser and browse into the public IP of your web tool instance (Port 9000 which we opened
in security group). That should give you KAFKA manager up and running. Opening ZooNavigator will show
KAFKA Manager alongside kafka and zookeeper.

Then go to KAFKA Manager web UI and Add Cluster and Make these settings

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 37

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 38

Figure 22 KAFKA Manager Settings

Going to Cluster view depicts how many Topics are there and How many Brokers.

Figure 23 KAFKA Manager Cluster View

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 39

Figure 23 KAFKA Manager Topic View

It goes onto show that few topics are in red because their spread is not good across brokers. This tool
allows you to manage/create/delete partitions/topics.

6 INSTALLING KAFKA TOPICS UI, CONFLUENT REST PROXY AND

SCHEMA

SSH into EC2 instance of Web Tool and from AWS dashboard select instance corresponding to Web tool
and edit the security group setting and open port 8000 custom TCP for all IPs (You can select My IP if your
IP is static)

Figure 24 Opening ports in Web tool for Confluent Registry etc.

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 40

Log into Web tool and use this command nano kafka-topics-ui-docker-compose.yml and please ensure that
“SCHEMA_REGISTRY_HOST_NAME: "13.250.44.236"” and “KAFKA_REST_HOST_NAME: "13.250.44.236"”
has the Public IP corresponding to your Web Tool Instance in AWS

version: '2'

services:
 # https://github.com/confluentinc/schema-registry
 confluent-schema-registry:
 image: confluentinc/cp-schema-registry:3.2.1
 network_mode: host
 environment:
 SCHEMA_REGISTRY_KAFKASTORE_CONNECTION_URL:
zookeeper1:2181,zookeeper2:2181,zookeeper3:2181/kafka
 SCHEMA_REGISTRY_LISTENERS: http://0.0.0.0:8081
 # please replace this setting by the IP of your web tools server
 #SCHEMA_REGISTRY_HOST_NAME: "54.206.91.106"
 SCHEMA_REGISTRY_HOST_NAME: "13.250.44.236"
 restart: always

 # https://github.com/confluentinc/kafka-rest
 confluent-rest-proxy:
 image: confluentinc/cp-kafka-rest:3.2.1
 network_mode: host
 environment:
 KAFKA_REST_BOOTSTRAP_SERVERS: kafka1:9092,kafka2:9092,kafka3:9092
 KAFKA_REST_ZOOKEEPER_CONNECT:
zookeeper1:2181,zookeeper2:2181,zookeeper3:2181/kafka
 KAFKA_REST_LISTENERS: http://0.0.0.0:8082/
 KAFKA_REST_SCHEMA_REGISTRY_URL: http://localhost:8081/
 # please replace this setting by the IP of your web tools server
 #KAFKA_REST_HOST_NAME: "54.206.91.106"
 KAFKA_REST_HOST_NAME: "13.250.44.236"
 depends_on:
 - confluent-schema-registry
 restart: always

 # https://github.com/Landoop/kafka-topics-ui
 kafka-topics-ui:
 image: landoop/kafka-topics-ui:0.9.2
 network_mode: host
 environment:
 KAFKA_REST_PROXY_URL: http://localhost:8082
 PROXY: "TRUE"
 depends_on:
 - confluent-rest-proxy

restart: always

launch it by running this command

docker-compose -f kafka-topics-ui-docker-compose.yml up -d

mailto:abhishek.dhar@capgemini.com

(Abhishek Dhar) abhishek.dhar@capgemini.com 41

Then you can log into Web browser (Public IP of Web Tool Instance and Port 8000) and you can see all
Topics/Partition. It allows you to examine data in each topic

Figure 25 KAFKA Topics UI

7 CONCLUSION

We have seen how to set up Amazon AWS EC2 instances and configure KAFKA and Zookeeper and all
associated tools. Zookeeper is the foundation of many “Distributed Processing” based system and KAFKA
is a cornerstone of internet enabled projects dealing with massive inflow/outflow of data (example IOT).

mailto:abhishek.dhar@capgemini.com

